Introducing a rainfall compound distribution model based on weather patterns sub-sampling

نویسنده

  • F. Garavaglia
چکیده

This paper presents a probabilistic model for daily rainfall, using sub-sampling based on meteorological circulation. We classified eight typical but contrasted synoptic situations (weather patterns) for France and surrounding areas, using a “bottom-up” approach, i.e. from the shape of the rain field to the synoptic situations described by geopotential fields. These weather patterns (WP) provide a discriminating variable that is consistent with French climatology, and allows seasonal rainfall records to be split into more homogeneous sub-samples, in term of meteorological genesis. First results show how the combination of seasonal and WP sub-sampling strongly influences the identification of the asymptotic behaviour of rainfall probabilistic models. Furthermore, with this level of stratification, an asymptotic exponential behaviour of each sub-sample appears as a reasonable hypothesis. This first part is illustrated with two daily rainfall records from SE of France. The distribution of the multi-exponential weather patterns (MEWP) is then defined as the composition, for a given season, of all WP sub-sample marginal distributions, weighted by the relative frequency of occurrence of each WP. This model is finally compared to Exponential and Generalized Pareto distributions, showing good features in terms of robustness and accuracy. These final statistical results are computed from a wide dataset of 478 rainfall chronicles spread on the southern half of France. All these data cover the 1953– 2005 period. Correspondence to: F. Garavaglia ([email protected])

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reliability and robustness of rainfall compound distribution model based on weather pattern sub-sampling

A new probabilistic model for daily rainfall, named MEWP (Multi Exponential Weather Pattern) distribution, has been introduced in Garavaglia et al. (2010). This model provides estimates of extreme rainfall quantiles using a mixture of exponential distributions. Each exponential distribution applies to a specific sub-sample of rainfall observations, corresponding to one of eight typical atmosphe...

متن کامل

شناسایی الگوهای سینوپتیکی پدید آورنده بارش های سنگین حوضه آبخیز طالقان در استان البرز

Classifying daily climate circulation patterns has always been considered by climatologists. Investigating climate changes such as rainfall and the temperature in a same single time and place suggests that these changes are strongly influenced by atmospheric circulation patterns. Regarding so, climate changes, known as variables here, such as rainfall, temperature, and other related phenomen...

متن کامل

Simulation of rainfall temporal distribution pattern using WRF Model (case study of Parsian dam basin)

During the rainfall, the intensity of precipitation varies. Changes in the amount of precipitation during an event of rainfall are effective in the resulting of flood and its intensity. Knowledge of how rainfall changes over time during rainfall is determined by temporal distribution pattern of rainfall. For this purpose, availability of short-term time scales rainfalls data are important that ...

متن کامل

مدل سازی فضایی-زمانی وقوع و مقدار بارش زمستانه در گستره ایران با استفاده از مدل مارکف پنهان

Multi site modeling of rainfall is one of the most important issues in environmental sciences especially in watershed management. For this purpose, different statistical models have been developed which involve spatial approaches in simulation and modeling of daily rainfall values. The hidden Markov is one of the multi-site daily rainfall models which in addition to simulation of daily rainfall...

متن کامل

Intra-seasonal climate prediction - linking Weather and Climate Forecasts

The Madden-Julian Oscillation (MJO) is a tropical atmospheric phenomenon, associated with periods of active convection in the eastern hemisphere tropics.The MJOs temporal scale (22-90 days) coincides with a gap between weather (synoptic forecasts out to 10 days) and climate (seasonal and longer forecasts).Analysis of 35 years of daily rainfall data shows significant modulation of tropical and e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010